Saturday, December 21, 2024

New insights into plants offer natural defense mechanisms: Study

Date:

Thiruvananthapuram: Agricultural modernisation has led to the widespread use of synthetic chemicals to control pests and pathogens. Pesticides, though very effective, often pollute the environment and can have deleterious effects on animal and human health.

A team of researchers from the Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, and Tata Institute of Fundamental Research, has provided strong molecular evidence for the two-fold advantage of defense ‘priming’ as a sustainable crop protection strategy in the indigenous spice crop ‘Black pepper’ (Piper nigrum).

The deleterious impact of pesticides has led to an urgent need for developing alternative pest and disease control approaches. One is the development of methods to enhance plants’ own natural defense mechanisms (innate immunity) by ‘priming’. Priming is a mechanism that leads to a physiological state that enables plants to respond more rapidly and/or more robustly after exposure to biotic or abiotic stress.

Black pepper (Piper nigrum) is an indigenous woody spice crop of global importance. Diseases and pests pose serious production constraints to its sustainable yield. Phytophthora capsici is the major pathogen responsible for the devastating ‘quick wilt’ or ‘foot-rot’ disease affecting black pepper. It infects the leaves, stems, and roots of cuttings in the nursery and pepper plantations.

Current practices of systemic fungicide treatment measures have negative implications and can lead to phytotoxicity and fungicide resistance. “Our study reports, for the first time, the potential of defense priming as an efficient crop protection strategy in Piper nigrum against infection by Phytophthora capsici. Our findings establish a proof-of-concept of the potential of defense priming through stem/vine injection in protecting P. nigrum from infection in nurseries and plantations,” researchers explain.

“Our data open the way for in-depth mechanistic studies for identifying new potential natural agents that can prime the defense of P. nigrum sustainably. This is the first report that provides strong molecular evidence for the two-fold advantage of defense priming in P. nigrum by improving crop protection with a concomitant enhancement in Piperine biosynthesis,” researchers further elucidate.

Glycol Chitosan (GC), a water-soluble, non-toxic polymer with several commercial and possible biomedical uses, has been used in this study. It is known to induce plant defense. “It was consistently observed that GC treatment offered protection from the severity of ‘quick wilt’ disease and caused a significant delay in the appearance of symptoms. A noteworthy observation of the study was the significant increase in ‘Piperine’ accumulation in leaves due to priming. Piperine is regarded as largely responsible for the pungent taste of black pepper,” researchers report.

The team conducted studies in rooted cuttings in seedlings, detached leaves of mature plants, and rooted cuttings in the field. They injected GC into the experimental plants’ leaves and subjected them to pathogen infection, post 24 hours of treatment. The development of symptoms and disease spread was observed microscopically and confirmed by molecular pathogen DNA quantification assay. The expression levels of critical genes of the defense signalling pathway were measured along with Lignin and Piperine content quantification.

“Our study has shown the promising potential of ‘priming’ and has potential implications in crop nurseries and the field. More work is needed to establish the durability of priming and to optimize the method and duration of treatment for a large-scale commercial application,” researchers recommend.

The study team comprised M. Indu, B. Meera, K.C. Sivakumar, Chidambareswaren Mahadevan, K Mohammed Shafi, B. Nagarathnam, Ramanathan Sowdhamini, and Manjula Sakuntala. The study has been published in Frontiers, an open-access journal.

Related articles

E-Waste and Laboratories : Climate Change A Global Problem

Did you know that electronic waste, also known as e-waste, is one of the fastest-growing waste streams in...

The Tragic Loss of OpenAI Whistleblower Suchir Balaji and the Dark Side of AI Development

On November 26, 2024, Qvive Network was stunned to learn about the sudden death of Suchir Balaji. He...

Plants That Heal – Episode 2 | Chilli

Welcome to Qvive Bytes, the latest episode of Qvive Network, where we explore the healing benefits of plants and...

A response from Dr. Biswroop regarding the legal dispute with Tata Memorial Hospital concerning Sidhu’s natural diet strategy to recover from cancer

Dr. Biswaroop Roy Chowdhury made headlines when he stated that Navjot Singh Siddhu's wife had tried the natural...